We believe that this information is the best currently available on the subject. It is offered as possibly helpful in any experimentation you may care to undertake along these lines. NatureWorks LLC makes no guarantee of results and assumes no obligation or liability whatsoever in connection with this information. Anyone intending to use recommendations contained in this publication concerning equipment, processing techniques or chemical products should first satisfy themselves that the recommendations are suitable for their use and meet all appropriate safety, health and environmental standards. This publication is not a license to operate under, or intended to suggest infringement of, any existing

Introduction

This information bulletin describes techniques for piece dyeing and finishing woven fabrics of ring spun and friction-twist textured filament Ingeo™ fiber yarns. Although Ingeo™ fiber (PLA) yarns exhibit many attributes similar to other man-made synthetic fibers, they are a new, unique category that requires modified dyeing and finishing techniques to maximize their benefits. As Ingeo™ fiber is from a new category of polymer, PLA (Poly Lactic Acid), there is much information that remains to be understood. The information contained in this bulletin is the most current information available and will be updated as more knowledge is gained.

The use of any environmentally hazardous substances during the processing of Ingeo™ fiber fabrics would be contradictory to the environmentally friendly advantages of the fiber and must be avoided.

Process Flow

To achieve the maximum benefit of the Ingeo fiber fabric tactile characteristics (hand and drape), it is critical to follow the following process flow.

- Pre-Heat Set (depends upon fabric construction)
- De-size or Scour
- Dye
- Reductive Clear
- Post Heat Set
- Finish

Pre-Heat Setting

Friction-twist textured PLA yarns are not heat set during the texturing process, resulting in high shrinkage potential. Setting of the yarns during texturing is not possible due to the low melt temperature (165° C-170°C) of PLA polymer.

If the fabric contains friction-twist textured PLA yarns in the warp only and the warp was sized as prescribed in the “Weaving of Ingeo™ fiber fabrics” bulletin, the fabric does not need this pre-heat set step prior to scouring.

However, if the fabric contains Friction Twist Textured (FTT) filament Ingeo™ fiber yarn in the warp and has not been sized, or contains FTT filament Ingeo fiber yarns in the weft, then a pre-heat set step must be included. Elimination of this fabric pre-heat set step prior to any wet processing of the fabric will result in a fabric that is stiff and harsh.

Fabrics that contain Ingeo fiber spun yarns only do not need to be pre-heat set. However, pre-heat setting will help to avoid creases in dyeing. The PLA fabric should be pre-heat set to a width 6% - 10% less than the “off loom” fabric width, and with 6% - 10% overfeed. The pre-heat set temperature must not exceed 130° C (actual fabric temperature). Very good results have been obtained with heat set temperatures as low as 120° C-125° C, with dwell time of 30 to 45 seconds at effective temperature.
Size Removal

For size removal follow the size supplier’s recommended de-sizing procedure. However, care should be taken that the de-sizing conditions are such that the chemical bath pH does not exceed 7.5, and application temperature is below 90º C. These conditions are quite sufficient for the removal of PVA or Polyester size, which are the recommended sizes for the Ingeo fiber yarns.

Scouring

To minimize the risk of poor dye uniformity, dye blotches, stains and dye fastness issues, all fabrics should be scoured to remove lubricants and mill dirt or stains that may have accumulated. Fully acceptable scouring for Fabrics containing filament Ingeo fiber yarns only can be achieved with nonionic detergents and soda ash. The pH should be maintained in the 4.5 - 7.5 level to minimize the risk of hydrolysis of the fibers.

- In the case where the fabrics have spun yarns containing waxes as a lubricant, the wax can be removed by using the Diadavin UFN (a nonionic scouring agent, which has been found to emulsify yarn wax and remove lubricants and oily impurities under neutral pH, and lower temperature conditions.

A recommended procedure is as follows

1. Fill with water and raise to 40º C
2. Add Kieralon® Jet-B Conc (BASF), or Cyclanon ECO® (BASF), or Diadavin UFN (BAYER), or Diadafin UNJ (Bayer) at 0.5-1.0 g/l
3. Adjust pH with Soda Ash or MSP (MonoSodimPhosphate)
4. Raise temperature to 60º C at maximum rate
5. Run 10 minutes
6. Cool to 50º C
7. Drain
8. Fill with 40º C water and Over-Flow Wash for 10 minutes
9. Drain

Dyeing

Like polyester, Ingeo™ fiber fabrics are dyed using disperse dyes. It has to be noted however, that not all Disperse dyes are suitable to dye PLA. DyStar Co. has pioneered the research in determining a selection of Disperse dyes, from their dye range offering, suitable for the coloration of the Ingeo fiber. This selection is available from the DyStar Co. as the “Ingeo™ fiber Coloration Pack”. Other dye supply companies that have worked on the coloration of the Ingeo fiber are: Ciba, Clariant, Yorkshire Chemicals, and M. Dohmen Inc. Due to the unique crystalline morphology of PLA the critical temperature range over which dye exhausts (strike rate) on to Ingeo fiber is about 20ºC lower than that polyester. As a result of this faster strike rate of Ingeo fiber, the use of levelers is not necessary and is not recommended. The use of carriers is unnecessary and contrary to the environmentally friendly perspective of the Ingeo™ fiber and must be avoided. In addition Defoamers that would render the fabric Hydrophobic should be avoided in order to maintain the moisture management characteristics of the Ingeo™ fiber fabrics.

A typical dye procedure is as follows:

1. Set bath 40º C
2. Add 6 g/l MSP (MonoSodimPhosphate)*
3. Add Dispersant (such as Basol WS liquid by Bayer)
 - Dispersant (follow manufacturer’s recommendation on level)
4. Run 5-10 minutes to ensure good mixing
5. Add dyes
6. Check pH and adjust to 4.5-5.0 as necessary with MSP or Soda Ash

Also the addition of a fiber to metal lubricant is recommended. However, as with defoamers, not diminishing the hydrophilic character of the Ingeo fiber should be considered. Milease-T (initially from ICI) or similar in chemistry auxiliaries have been found to be suitable for this application.
7. Raise temperature to 60º C at 2-3º C/minute
8. Raise temperature to 110º C at 1º C/minute (for dark shades such as Navy and Black)
9. Run for 30-45 minutes depending upon dyes used and shade desired
10. Cool to 60º C at 1-2º C/minute
11. Drain
12. Fill with 50º C and Over-Flow wash for 10 minutes
13. Drain

* Normally, 2 g/l of MSP is sufficient to lower the pH to about 5.0. However, it was noted that during the dye cycle of the Ingeo™ fiber fabrics the pH of the bath would progressively drop to an undesirable level. It was found that an additional 4 g/l of MSP would provide the buffering needed to maintain a pH level of 4.3 to 4.8 during the entire dye cycle.

Post Heat Setting
After dyeing, the Ingeo fiber fabrics will have to be heat set, as most other synthetic fabrics. However, the fabric temperatures must not exceed 130º C. Very good results have been obtained with heat set temperatures as low as 125º C, with dwell time of 25 to 45 seconds of effective temperature (actual fabric temperature).

Factors influencing the post heat setting conditions for fabric Width and Overfeed include the following:
- Wet width of fabric
- Desired finished construction (Ends and Picks/inch)
- Smoothness of fabric after dyeing
- Desired drape of finished fabric
- Desired hand of finished fabric
- Desired bulk in finished fabric

As can be seen from the above, conditions for the final heat setting of the fabric are set by some experimentation before committing the entire dye lot.

Fabric Finishing
Moisture management and flammability are two inherent attributes of PLA fabrics and must not be inhibited by the introduction of any chemicals or auxiliaries during the dyeing or finishing process. Until the effects of various additives are fully understood, the addition of any additives (hydrophilic or hydrophobic) should be done in consultation with NatureWorks LLC technical representatives.

Reductive Clear
To remove surface dyes in order to obtain the best wet fastness properties possible, a reductive clearing scour is recommended after dyeing.

A recommended Reductive Clear procedure is as follows:

1. Raise temperature to 40º C at maximum rate
2. Add from the addition tank:
 - For Light to Medium Colors: 2 g/l Cyclanon ECO
 - For Dark Colors: 1.5 g/l Soda Ash
 - 2 g/l MSP
 - 2 g/l Hydrosulfite Con.
3. Raise temperature to 60º at 2º C
4. Run for 15 minutes
5. Cool to 50º C at 3º C
6. Drain
7. Over-Flow wash at 50º C for 10 minutes
8. Over-Flow wash at 30º C for 5 minutes
Trade References

Safety and Handling Considerations
Material Safety Data (MSD) sheets for PLA polymers are available from NatureWorks LLC. MSD sheets are provided to help customers satisfy their own handling, safety, and disposal needs, and those that may be required by locally applicable health and safety regulations, such as OSHA (U.S.A.), MAK (Germany), or WHIMS (Canada). MSD sheets are updated regularly; therefore, please request and review the most current MSD sheets before handling or using any product.

The following comments apply only to PLA polymers; additives and processing aids used in fabrication and other materials used in finishing steps have their own safe-use profile and must be investigated separately.

Hazards and Handling Precautions
PLA polymers have a very low degree of toxicity and, under normal conditions of use, should pose no unusual problems from incidental ingestion, or eye and skin contact. However, caution is advised when handling, storing, using, or disposing of these resins, and good housekeeping and controlling of dusts are necessary for safe handling of product. Workers should be protected from the possibility of contact with molten resin during fabrication. Handling and fabrication of resins can result in the generation of vapors and dusts that may cause irritation to eyes and the upper respiratory tract. In dusty atmospheres, use an approved dust respirator. Pellets or beads may present a slipping hazard. Good general ventilation of the polymer processing area is recommended. At temperatures exceeding the polymer melt temperature (typically 170°C), polymer can release fumes, which may contain fragments of the polymer, creating a potential to irritate eyes and mucous membranes. Good general ventilation should be sufficient for most conditions. Local exhaust ventilation is recommended for melt operations. Use safety glasses if there is a potential for exposure to particles which could cause mechanical injury to the eye. If vapor exposure causes eye discomfort, use a full-face respirator. No other precautions other than clean, body-covering clothing should be needed for handling PLA polymers. Use gloves with insulation for thermal protection when exposure to the melt is localized.

Combustibility
PLA polymers will burn. Clear to white smoke is produced when product burns. Toxic fumes are released under conditions of incomplete combustion. Do not permit dust to accumulate. Dust layers can be ignited by spontaneous combustion or other ignition sources. When suspended in air, dust can pose an explosion hazard. Firefighters should wear positive-pressure, self-contained breathing apparatuses and full protective equipment. Water or water fog is the preferred extinguishing medium. Foam, alcohol-resistant foam, carbon dioxide or dry chemicals may also be used. Soak thoroughly with water to cool and prevent re-ignition.

Disposal
DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. For unused or uncontaminated material, the preferred options include recycling into the process or sending to an industrial composting facility, if available; otherwise, send to an incinerator or other thermal destruction device. For used or contaminated material, the disposal options remain the same, although additional evaluation is required. (For example, in the U.S.A., see 40 CFR, Part 261, “Identification and Listing of Hazardous Waste.”) All disposal methods must be in compliance with Federal, State/Provincial, and local laws and regulations.

Environmental Concerns
Generally speaking, lost pellets are not a problem in the environment except under unusual circumstances when they enter the marine environment. They are benign in terms of their physical environmental impact, but if ingested by waterfowl or aquatic life, they may mechanically cause adverse effects. Spills should be minimized, and they should be cleaned up when they happen. Plastics should not be discarded into the ocean or any other body of water.

Product Stewardship
NatureWorks LLC has a fundamental duty to all those that make and use our products, and for the environment in which we live. This duty is the basis for our Product Stewardship philosophy, by which we assess the health and environmental information on our products and their intended use, then take appropriate steps to protect the environment and the health of our employees and the public.

Customer Notice
NatureWorks LLC encourages its customers and potential users of its products to review their applications for such products from the standpoint of human health and environmental quality. To help ensure our products are not used in ways for which they were not intended or tested, our personnel will assist customers in dealing with ecological and product safety considerations. Your sales representative can arrange the proper contacts. NatureWorks LLC literature, including Material Safety Data sheets, should be consulted prior to the use of the company’s products. These are available from your NatureWorks LLC representative.

NOTICE: No freedom from any patent owned by NatureWorks LLC or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer’s use and for ensuring that Customer’s workplace and disposal practices are in compliance with applicable laws and other governmental enactments. NatureWorks LLC assumes no obligation or liability for the information in this document. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

NOTICE REGARDING PROHIBITED USE RESTRICTIONS: NatureWorks LLC does not recommend any of its products, including samples, for use as: Components of, or packaging for, tobacco products; Components of products where the end product is intended for human or animal consumption; In any application designed specifically to promote or interfere with human reproduction.

NatureWorks and the NatureWorks logo are trademarks of NatureWorks LLC
Copyright © 2005 NatureWorks LLC