UV resistance

Ingeo™ Fiber Outperforms Other Synthetics in Resistance to UV Light

Made entirely from annually renewable resources such as corn, Ingeo™ fibers have the performance advantages of both natural and synthetic materials. Additionally, the performance benefits of Ingeo are inherent in the fiber, requiring no treatment or finish. The performance will not diminish or fade after washings or over time.

Test #1, Fabric Exposure

exposure method - AATCC 16E

- Xenon light source
- Continuous light cycle, no water spray
- Black panel temperature (63 ± 1 ° C)
- Dry bulb temperature (43 ± 2° C)
- Relative humidity (30 ± 5%)

samples

- PLA: 1.2 d staple, Ne 20/1 ring spun yarn, 41.6 in/course, single jersey knit tube sleeves
- PET: Ne 18/1 open end spun yarn, 41.6 in/course, single jersey knit tube sleeves
- Acrylic: Ne 18.7/1, 41.6 in/course, single jersey knit tube sleeves

measurements

- Burst strength vs. exposure time (ASTM D3787)
- Molecular weight vs. exposure time (GPC)
- Color change vs. exposure time (HunterLab Colorimeter)

procedure

- Spun yarns knitted on FAK sample knitter
- Samples washed in hot water/cold rinse (no detergent)
- Samples cut into 6” x 6” specimens
- Specimens placed between two black cardboard cutouts
- Front exposure window 4” x 4” to UV light, with solid back piece
- Atlas weatherometer used for UV light exposure
- Specimens pulled at 240, 500 and 1000 hours exposure
A garnett or card clothed with wire type and density suitable for the fiber denier is required. In general, low denier fiber requires finer gauge wire and higher wire density to be processed into uniform web for good quality products. For example, 100-200 wire points/inch² density can process 3-9 denier fiber adequately. 500-600 points/inch² wire density may be required to process fibers that are 1 dpf.

All moving rolls in garnett or card must be cleaned so fibers can be effectively separated into individual fibers to form uniform web. Damaged wires should be cleaned.

UV resistance

percent molecular weight loss results

HunterLab colorimeter results
conclusions

PLA and acrylic had similar burst strength loss. PET had the worst in the study:

- PLA: -21.3%
- PET: -47.4%
- Acrylic: -22.2%

The PLA sample had about an 8% molecular weight loss over the 1000 hour exposure time period. This is 0.7% outside the error of the instrument.

The acrylic had the greatest change in color, as measured by the HunterLab Colorimeter over the 1000 hours exposed. PLA had the lowest change.

Test #2, PLA Film UV Absorbance test

Samples of polyester and PLA films were used for the testing. The samples were positioned in an absorbance UV/Visible Spectrophotometer to test the ultraviolet performance. The percentage of absorbancy and transmittance was determined, as a function of wavelength, in the range of 200 to 800 nanometers. The samples were plotted together and compared as a function of wavelength. Comparisons were then made at critical wavelengths that represented typical fluorescent and sunlight.

results

Recent internal testing shows that Ingeo fibers are resistant to ultraviolet light. Ingeo fibers remained unaffected through changing levels of UV light while polyesters have high absorption levels.